Juan Felipe Gomez

J (+1)404-386-2450 | ■ juangomez@g.harvard.edu | 🏠 http://felipe-gomez.com/ | 🖸 Felipe-Gomez

Education

Harvard University Cambridge, MA

Ph.D. in Physics, Advised by Professor Flavio du Pin Calmon

Expected May 2026

California Institute of Technology

Pasadena, CA

B.S. in Physics
Concentration in Condensed-Matter Physics, GPA 4.0/4.0

Sep. 2016 - Jun. 2020

Georgia Institute of Technology

Atlanta, GA

Attended during final year of high school, GPA 4.0/4.0

Sep. 2015 - May 2016

Selected Research Projects _____

Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in DP

2025

- Showed that various common notions of privacy risk (see title of paper) can be bounded under a single unified framework; NeurIPS 2025.
- · Showed that this framework improves upon existing bounds, which leads to more accurate downstream models.
- ML models with interpretable privacy guarantees are essential for trustworthiness. We provide an open-source library for practitioners to train Pytorch models with interpretable privacy guarantees.

Attack-aware Noise Calibration for Differential Privacy

2024

- Showed that calibrating noise to an interpretable privacy risk (such as accuracy of inference attacks) instead of privacy parameter ε increases
 utility in language and vision models by over 10%; NeurIPS 2024.
- Similar to the work above, this work shows how to train models with rigorous privacy guarantees, and provides an open-source Pytorch
 implementation for ease of adoption.

Algorithmic Arbitrariness in Content Moderation

2024

- Empirically observed that LLMs finetuned for content moderation exhibit predictive multiplicity, where equally accurate models assign conflicting predictions to the same content; FAccT 2024.
- Made concrete policy suggestions for content moderation and intermediary liability laws, which led to a policy brief for T20 2024.
- This work showed that predictive multiplicity is a practical problem and provides a road map for how to empirically measure and mitigate it.

The Saddle-Point Method in Differential Privacy

2023

- Derived a constant-time closed-form formula for computing the privacy parameter ε under high composition; ICML 2023.
- · Led implementation and experiments; matched/beat numerical baselines; see open-source code here.
- Our approach removes numerical difficulties from computing ε , making DP algorithms more reliable.

Schrödinger Mechanisms: Optimal Differential Privacy Mechanisms for Small Sensitivity

2023

- Derived scalar optimal DP mechanisms in the practical small-sensitivity and high composition regime; ISIT 2023.
- Demonstrated a connection between quantum physics and differential privacy.
- · Clarified when and why Gaussian noise is optimal; which increases confidence in its widespread use in AI.

Publications

I publish and collaborate across areas. Each field has its own conventions for ordering authors. Below, starred publications highlight publications where I am first author or co-first author.

- [1] B. Kulynych*, J. F. Gomez*, G. Kaissis, J. Hayes, B. Balle, F. P. Calmon, and J.-L. Raisaro, "Unifying re-identification, attribute inference, and data reconstruction risks in differential privacy," arXiv preprint arXiv:2507.06969, 2025, (to appear in NeurIPS 2025).
- [2] B. Kulynych*, J. F. Gomez*, G. Kaissis, F. P. Calmon, and C. Troncoso, "Attack-aware noise calibration for differential privacy," in Advances in Neural Information Processing Systems, vol. 37, 2024, pp. 134868–134901.
- [3] **J. F. Gomez***, C. Machado*, L. M. Paes, and F. P. Calmon, "Algorithmic arbitrariness in content moderation," in Proc. 2024 ACM Conf. on Fairness, Accountability, and Transparency (FAccT '24), 2024, pp. 2234–2253.
- [4] W. Alghamdi, J. F. Gomez, S. Asoodeh, F. P. Calmon, O. Kosut, and L. Sankar, "The saddle-point method in differential privacy," in Proc. 40th Int. Conf. on Machine Learning (ICML), 2023, pp. 508–528.
- [5] W. Alghamdi, S. Asoodeh, F. P. Calmon, **J. F. Gomez**, O. Kosut, and L. Sankar, "Schrödinger mechanisms: Optimal differential privacy mechanisms for small sensitivity," in Proc. IEEE Int. Symp. on Information Theory (ISIT), 2023, pp. 2201–2206.
- [6] W. Alghamdi, S. Asoodeh, F. P. Calmon, J. F. Gomez, O. Kosut, and L. Sankar, "Optimal multidimensional differentially private mechanisms in the large-composition regime," in Proc. IEEE Int. Symp. on Information Theory (ISIT), 2023, pp. 2195–2200.
- [7] Y. Wang, P. A. Lee, D. M. Silevitch, **J.F. Gomez** et al., "Antisymmetric linear magnetoresistance and the planar Hall effect," Nat. Commun., vol. 11, Art. no. 216, 2020.

Awards and Honors ____

DOE CSGF Fellow April 2020 - August 2024

I was one of four Harvard graduate students in 2020 who were awarded the Department of Energy Computational Science Graduate Fellowship (DOE CSGF).

Goldwater Scholar April 2019

I was one of three Caltech students who won the Goldwater Scholarship in 2019.

Teaching Experience _____

Teaching Fellow, Harvard University

Cambridge, MA

Note: the DOE CSGF prevented me from teaching from Spring 2021 - Spring 2024

Electromagnetism from an Analytic, Numerical and Experimental Perspective (Dr. Gregorio Ponti, Dr. Anna Wang-Holtzen), Fall 2025 Advanced Scientific Computing: Stochastic Methods for Data Analysis, Inference, and Optimization (Professor Weiwei Pan), Fall 2021